
Journal of Statistical Physics, Vol. 95, Nos. 1�2, 1999

Ising Cluster Kinetics at the Critical Point
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The scaling laws of Edwards et al. for cluster fragmentation at the two-dimen-
sional percolation threshold, recently confirmed also in high dimensions, explain
the Alexandrowicz observation that the Becker�Do� ring equation of classical
nucleation theory and its generalization by Katz, Saltsburg, and Reiss fail right
at the critical point.

KEY WORDS: Glauber kinetics; percolation; fragmentation.

Nucleation theory explains reasonably well the formation of liquid droplets
out of a supersaturated vapour, as well as the differences between stretched
exponential and simple exponential relaxation of the d-dimensional Ising
model above and below its critical temperature. These phenomena away
from equilibrium are approximated by the Becker�Do� ring equation:(1)

�Ns ��t=
�
�s _Rs Ns

�
�s

(Ns�ns)& (1)

Here Rs is a cluster growth rate, Ns(t) is the non-equilibrium number of
clusters containing s molecules each, and ns the stationary (equilibrium)
number. Earlier literature is cited in ref. 2.

Alexandrowicz, (3) however, found that right at the critical point
Eq. (1) fails, and this failure was confirmed by Monte Carlo simulations of
the two- and three-dimensional Ising models.(4) Eq. (1) was derived(1) by
assuming clusters to grow and shrink only by single molecules, but it has
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been generalized long ago(5) to the incorporation and splitting-off of small
j-clusters; in this case the growth rate becomes

Rs=:
j

j 2K(s, j) Nj (2)

with the coagulation rate K at which two clusters collide and merge. Here
one takes j<<s; more generally with clusters of all possible size merging
and splitting again, the coagulation-fragmentation equation is:(6)

�Ns ��t= 1
2 : [K(i, j) N iNj&F(i, j) Ni+ j]

&: [K(s, j) NsN j&F(s, j) Ns+ j ] (3)

Here F(i, j) is the rate at which a cluster with s=i+ j molecules splits into
two with i and j particles; the first sum goes over all i and j with s=i+ j,
and the second over all j. In equilibrium,

K(i, j) ni nj=F(i, j) ni+ j (4)

must hold. A Taylor expansion for small j then gives Eq. (3). However,
right at the critical temperature the growth rate Rs was found to go to zero
for t � � at fixed s, indicating something fundamentally wrong, as pointed
out by Alexandrowicz.(3)

Now we estimate the coagulation coefficients from binary fragmenta-
tion studies of random bond percolation, (7) assuming that site percolation
is in the same universality class as bond percolation and that Ising clusters
have the same structure of the scaling equation and only slightly different
critical exponents. For example, at the critical point, both percolation and
Ising clusters (properly defined) are fractal and have nearly the same fractal
dimensions, like 2.53 and 2.48 in three dimensions.

Edwards et al.(7) showed at the bond percolation threshold that a
finite fraction of all cluster bonds are fragmenting in the sense that without
them the cluster of size s splits into two parts of sizes i and j with i+j=s.
Moreover, the probability bjs for a fragmenting s-cluster to split off a frag-
ment of size j ( j was called s$ in ref. 7) followed a scaling law

bjs=s&,f ( j �s) (5)

where , varies only slightly between 1.6 and 3�2 in two to infinite dimen-
sions. For small j this probability is independent of s according to Edwards
et al., (7) and thus f (x � 0) B x&, or bjs B j &, for 1<< j<<s. Numerically
in two dimensions they found f B [x(1&x)]&, as in the Bethe lattice, for
all x.
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For clusters in a Glauber kinetic Ising model, not all spins will flip or
all bonds will break with the same probability. But these probabilities are
purely local and thus their mutual ratios do not depend on the cluster size.
Thus as far as the exponents for the fragmentation probability are concerned,
we approximate the Ising fragmentation probability F(i, j) by the percola-
tion fragmentation probability bjs with s=i+ j; only the exponent , is
expected to be slightly different. Thus

F(i, j)=F( j, i) B s&,f [i�s]& (ij�s)&, (s=i+ j) (6)

at the Ising critical point.
The equilibrium cluster numbers at the Curie point are known to

decay asymptotically as ns B s&{ with { varying from about 2 to 5�2 for
d=2 to infinity; then the coagulation rates are

K(i, j)=nsF(i, j)�(ninj) B (ij�s){&, (s=i+ j) (7a)

which for 1<< j<<i and thus i&s reduces to

K(s, j) B j {&, (7b)

as an approximation for K(s, j) in Eq. (2).
Now the equilibrium growth rate Rs of Eq. (2), which converges away

from the critical point because of the exponential decay of the cluster num-
bers there, right at the critical point is proportional to � j j 2j {&,j &{=
� j j 2&, which is clearly diverging. Thus the simple approximation (2),
which is based on small clusters colliding with big ones, is no longer good
right at the Ising critical point; there coalescence of clusters of about equal
sizes, requiring the solution of the full Eq. (3) instead of (1), seems to be
the dominating process and explains the failure of the Becker�Do� ring equa-
tion.(3) However, we do not exclude other sources of deviations from the
Becker�Do� ring equation, like excluded volume effects(8) or other cluster-
cluster correlations.
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